Inequalities of singular values and unitarily invariant norms for sums and products of matrices
نویسندگان
چکیده
In this work, we investigate inequalities of singular values and unitarily invariant norms for sums products matrices. First, give an another more concise clear proof to inequality obtained by Chen Zhang [6, Theorem 5]. Then, establish values. addition, also a As applications inequality, present some inequalities.
منابع مشابه
Inequalities for Unitarily Invariant Norms and Bilinear Matrix Products
We give several criteria that are equivalent to the basic singular value majorization inequality (1.1) that is common to both the usual and Hadamard products. We then use these criteria to give a uniied proof of the basic majorization inequality for both products. Finally, we introduce natural generalizations of the usual and Hadamard products and show that although these generalizations do not...
متن کاملInequalities for unitarily invariant norms
This paper aims to discuss some inequalities for unitarily invariant norms. We obtain several inequalities for unitarily invariant norms.
متن کاملSome Inequalities for Unitarily Invariant Norms
This paper aims to present some inequalities for unitarily invariant norms. In section 2, we give a refinement of the Cauchy-Schwarz inequality for matrices. In section 3, we obtain an improvement for the result of Bhatia and Kittaneh [Linear Algebra Appl. 308 (2000) 203-211]. In section 4, we establish an improved Heinz inequality for the Hilbert-Schmidt norm. Finally, we present an inequality...
متن کاملWeak log-majorization inequalities of singular values between normal matrices and their absolute values
This paper presents two main results that the singular values of the Hadamard product of normal matrices $A_i$ are weakly log-majorized by the singular values of the Hadamard product of $|A_{i}|$ and the singular values of the sum of normal matrices $A_i$ are weakly log-majorized by the singular values of the sum of $|A_{i}|$. Some applications to these inequalities are also given. In addi...
متن کاملSingular values of convex functions of matrices
Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$ are nonzero matrices and each $X_{i}$ is positive semidefinite. It is shown that if $f$ is a nonnegative increasing convex function on $left[ 0,infty right) $ satisfying $fleft( 0right) =0 $, then $$2s_{j}left( fleft( fra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2022
ISSN: ['2406-0933', '0354-5180']
DOI: https://doi.org/10.2298/fil2201031z